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A benzenoid system H is a finite connected subgraph of the infinite hexagonal lattice with- 
out cut bonds and non-hexagonal interior faces. The branching graph G of H consists of all ver- 
tices of H of degree 3 and bonds among them. In this paper, the following results are 
obtained: 
(1) A necessary condition for a benzenoid system to have a Hamiltonian circuit. 
(2) A necessary and sufficient condition for a benzenoid system to have a Hamiltonian path. 
(3) A characterization of connected subgraphs of the infinite hexagonal lattice which are 

branching graphs ofbenzenoid systems. 
(4) A proof that if a disconnected subgraph G of the infinite hexagonal lattice given along 

with the positions of its vertices is the branching graph of a benzenoid system H, then H is 
unique. 

1. I n t r o d u c t i o n  

A Hamiltonian circuit (path) of  a graph G is a circuit (path) containing all ver- 
tices of  G. The problems of  deciding i fa  graph has a Hami l ton ian  circuit or a Hamil-  
tonian path  are NP-complete  [1] even for planar  graphs with all vertex degrees 
equal to 3 [2]. Hamil tonian  circuits have at t racted mathemat ic ians  for well over a 
hundred  years [3-8]. 

In the fast few years, the problems of  finding a Hamil tonian  circuit or a Hamil to-  
nian path  in chemical graphs, and particularly in benzenoid systems, have been dis- 
cussed in several papers [9-15]. The complexity of  both  problems for ben lenoid  
systems is still unknown.  The first problem is also related to the s tudy of  topological  
structures of  benzenoid hydrocarbons [17] and the conjugated-circuit  model  [18], 
for the Hami l ton ian  circuits represent the largest possible conjugated circuits. In 
[10], it is claimed that  traceability (a graph is called traceable if it has a Hami l ton ian  
path)  must  be among the factors that  determine what  kinds o f  s tructure it is possi- 
ble or impossible to form by intra-molecular crosslinking of  a linear polymer.  

A benzenoid system is defined to be a connected finite subgraph of  the infinite 
hexagonal  lattice which has no cut vertices or non-hexagonal  interior faces (see 
fig. 1). Aperfect  matching or 1-factor (Kekul6 structure in chemical language) of  a 
graph is a set of  disjoint edges covering all vertices. In order  to facilitate the search 
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Fig. 1. Benzenoid systems. 

for a Hamiltonian circuit (or a Hamiltonian path), Kirby [10] introduced the 
branching graph of a benzenoid system. It is defined as the subgraph consisting of 
all vertices of degree 3 and bonds among them (see fig. 2). The branching graph is 
closely related to 2-factors ofa  benzenoid system of H and 1-factors of the branch- 
ing graph of H [15] (a 2-factor of a graph is a set of disjoint circuits covering all ver- 
tices). The branching graph is also related to the Hamiltonian circuit (path) 
problem for benzenoid systems. This is based on the following observation: a ben- 
zenoid system H has a Hamiltonian circuit if and only if there is a perfect matching 
in its branching graph such that the delection from H of the edges in this perfect 
matching but not of their end vertices results in a connected graph (actually it is a 
circuit). For further information, see the recent survey (with new results) [ 16]. 

In this paper, we first present a necessary condition for a benzenoid system to 
have a Hamiltonian circuit. Next we give a necessary and sufficient condition for a 
benzenoid system to have a Hamiltonian path, based on the branching graph and 
similar to the existence condition for Hamiltonian circuits cited above. Then we 
answer the following question: which connected subgraphs of the infinite hexago- 
nal lattice are branching graphs of benzenoid systems. We also prove that if a dis- 
connected subgraph G of the infinite hexagonal lattice given with the positions of 
its vertices is the branching graph of a benzenoid system H then H is unique. To 
completely characterize which graphs are branching graphs of benzenoid systems 
seems to be hard, for at least we need to know which graphs can be embedded in the 
infinite hexagonal lattice. 

2. Hami l ton ian  circuits and Hami l ton ian  paths 

Several necessary conditions are known for a benzenoid system H to have a 
Hamiltonian circuit. For example, i f H  has Hamiltonian circuit then the number of 
its internal vertices is divisible by 4 [19, p. 235]. Another necessary condition for 
H to have a Hamiltonian circuit is that H has no fixed bonds, i.e., each of its bonds 

H G 

Fig. 2. The branching graph G ofa benzenoid system H. 
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belongs to some perfect matching of  H. In [20], a linear algorithm to determine all 
fixed bonds of  a benzenoid system is proposed. Another  fast algorithm for finding 
fixed bonds ofbenzenoid systems is given in [21 ]. 

In this section, we first state a necessary condition for a benzenoid system to 
have a Hamil tonian circuit. Before stating this condition, we recall the following 
definition [18]. A conjugated circuit of a benzenoid system H is a circuit C such that  
the bonds of  C are alternatively in and out of a perfect matching of  H. By this defi- 
nition, each circuit in a 2-factor of H is a conjugated circuit. 

In [22], it was shown that a conjugated circuit in benzenoid hydrocarbons has 
length 4k + 2 where k is a positive integer. 

THEOREM 1 
Let H be a benzenoid system. If  H has a Hamil tonian circuit then the number  

of  circuits in any 2-factor of H is odd. 

Proof 
Let F = {C1, C2,.. •, C~} be a 2-factor of H with circuits CI, C2,..  •, C~ and let 

Co be a Hamil tonian circuit of H. Then for i = 1 , 2 , . . . ,  r, the length I of c / i s  of  
the form 4ki + 2 where k~ is a positive integer. Thus ~i~=1 4ki q- 2r = 4k0 + 2. There- 
fore 2(r - 1) is divisible by 4, i.e., r is odd. [] 

Figure 3 shows two benzenoid systems with their 2-factors. By theorem 1, they 
have no Hamil tonian circuits. All three necessary conditions ment ioned above 
together are not  sufficient for a benzenoid system to have a Hamil tonian circuit, as 
illustrated by fig. 4. 

In [23], a necessary and sufficient condition for a benzenoid system H to have a 
Hamil tonian circuit is given: H has a Hamiltonian circuit if and only if there is a 
subset El of  the edge set E of  H whose deletion one by one from the border of  H (or 
of  the resulting subgraph) gives a catacondensed benzenoid. Unfor tunate ly  it 
does not  seem easy to derive from this condition an algorithm to find such a circuit. 
The following is another necessary and sufficient condition for a benzenoid system 
to have a Hamil tonian circuit (due to Kirby [10] and already ment ioned before). 

THEOREM 2 (KIRBY) 
Let H be a benzenoid system and G its branching graph. Then H has a Hamilto-  

nian circuit if and only if G has a perfect matching M such that  the removal  f rom 
H of  the bonds of  M but not of their end vertices results in a connected graph. 

Fig. 3. The number of circuits in a 2-factor is even; the benzenoid systems have no Hamiltonian 
circuits. 
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Fig. 4. H has no fixed bonds; the number of circuits in a 2-factor is odd and the number of internal 
vertices of H is divisible by 4; but H has no Hamiltonian circuit. 

By the above theorem, an exact algorithm to find a Hamiltonian circuit in a ben- 
zenoid system H if there is one works as follows: generate sequentially all perfect 
matchings of  the branching graph of  H and check each time if the removal of  the 
bonds in the current perfect matching from H results in a connected graph. If  it is 
the case, then this graph is a Hamil tonian circuit of  H. 

This algorithm does not  have a polynomial time complexity, but it at least pro- 
vides a systematic way to generate a Hamiltonian circuit of a benzenoid system if 
there is one. Ways to generate all perfect matchings of a benzenoid system are given 
in [24-26]; they are easily extended to the generation of  all perfect matchings of  a 
branching graph. 

We next state a necessary and sufficient condition for a benzenoid system to 
have a Hamil tonian path. This result has been conjectured by Kirby [10]. 

An  almost-perfect matching M ~ of a graph is a set of  disjoint edges covering all 
its vertices but two. 

THEOREM 3 
Let H be a benzenoid system and G its branching graph. Then H has a Hamilto-  

nian path  if and only if G has an almost-perfect matching M'  such that  the deletion 
from H of  the bonds of  M'  but not  of  their end vertices results in a connected 
graph. 

Proof 
If  H has a Hamiltonian path P, let H' be the graph obtained by deleting from 

H the bonds of  P but not  their end vertices. Then each vertex of H of  degree 2 is of  
degree 0 in H ~ if it is not  an end vertex of  P, and each vertex of  H of  degree 3 is of  
degree 1 in H ~ if it is not  an end vertex of P. An end vertex of  P is of  degree 2 or 1 in 
H ~ if it is of degree 3 or 2 respectively in H. Let G ~ be the graph obtained by deleting 
all vertices of  degree 0 from H'.  Then all vertices of G belong to G ~. Furthermore,  
there are at most  two vertices of G' (possibly the end vertices of P) which do not  
belong to G. There are three cases. 

(a) The end vertices v and v ~ of P are of degree 2 in H. Then v and v ~ are of  degree 
1 in G', and all other vertices of  G' are also of  degree 1 (because they are of  degree 
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Fig. 5. The  end  vert ices v and  v j of  P are of  degree 2. In  (i), v a n d  v ~ are ad jacen t  in M ;  in (ii), v and  v ~ 
are no t  ad jacent  in M.  

3 in H and internal vertices of  P). Thus all bonds of  G t are disjoint and form a per- 
fect matching  M of  G ~. I f v  is adjacent to z/ in  M, then deleting the bond  between v 
and z / f r o m  M we obtain a perfect matching of  G. Thus G has an almost-perfect  
matching  M ~ contained in M. If  it is not  the case, deleting the two bonds of  M which 
are incident with v and v ~ gives an almost-perfect matching M'  of  G. These cases 
are i l lustrated in fig. 5. 

(b) Both v and v' are of  degree 3 in H.  Then G ~ and G have the same vertex set. v 
and v¢ are of  degree 2 in G 1. All other vertices of  G ~ are of  degree 1. So there is a ver- 
tex u (u') of  degree 1 which is adjacent to v (v ~) in G r. Let e (d) be the bond  between 
v and u (v ~ and d) .  Then all the bonds of  G ~ but e and e' form an almost-perfect  
match ing  M ~ of  G. This case is illustrated in fig. 6. 

(c) One of  v and v j is of  degree 2 and the other is of  degree 3 in H.  Wi thout  loss 
of  generality, let v be of  degree 2. Then v is of  degree 1 and v' is of  degree 2 in G' and 
all o ther  vertices of  G' are of  degree 1. If  v is adjacent  to v', then all bonds of  G ~ 
but  the bond  between v and v ~ form a perfect matching of  G. Thus G has an almost-  
perfect  matching M ~ contained in G ~. I f  it is not  this case, let e and e ~ be two bonds 

e 

• - ¢ - -  u 

P ~  e o e,~o e,~ 

OO6 
H H'  G '  

e'  

Fig. 6. The  end vertices v and  J of  P are of  degree 3. 

An almost-perfect 
matching M'  of G. 
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of  G ~ which are incident with v and v ~ respectively. Then all bonds  of  G t but  e and 
e' form an almost-perfect  matching M t o f  G. Figure 7 illustrates the above cases. 

In the cases (a), (b) and (c), the deletion from H of  the bonds of  M '  but  not  their 
end vertices results in a graph which contains P. Thus this graph is connected.  

Conversely if G has an almost-perfect  matching M t such that  the removal  o f  
the bonds  of  M t f rom H (but not  of  their end vertices) results in a connected graph 
H ~, then H ~ has all vertices of  degree 2 except two of  degree 3. Let P be a path  of  
H ~ connecting the two vertices x and y of  degree 3. After  removal  of  all bonds  of  P 
together with their end vertices except x and y, a graph H "  is obtained. All the ver- 
tices of  H "  are of  degree 2. Thus H "  is the union of  disjoint circuits. Since H ~ is con- 
nected and all the deleted vertices are of  degree 2 in H t, H "  contains at most  two 
circuits. If  H "  contains two circuits, then P connects the two circuits o f  H" .  One can 
check that  H ~ has a Hamil tonian  path (see fig. 8(a)). Suppose H "  contains only 
one circuit. I f P  is a bond,  then H "  is a Hamil tonian  circuit o f H .  I f P  contains more  
than one bond,  then delete f rom H ~ the bond  which is incident with x and in P and 
the bond  which is incident with y and but  not  in P. A Hamil tonian  path of  H is 
obta ined (see fig. 8(b)). [] 

As above for theorem 2 and Hamil tonian  circuits, an algori thm based on theo- 
rem 3 can be devised to find a Hamil tonian  path in a benzenoid system H if there is 
one: generate sequentially all a lmost-perfect  matchings in the branching graph of  
H and check each time if  the deletion from H of  the bonds in the current  almost-  
perfect matching results in a connected graph. I f  this is the case, as in the p r o o f  of  
theorem 3, a Hamil tonian  path can be determined. This algori thm also does not  
have a polynomial  complexity.  Algori thm to generate all perfect matchings can be 

v 

V" V' v "I I 
p/4__ • • 

H H' v G' 
An almost-perfect 
matching M' of G. 

(i) 

V 
v 

: 'c  I E 
H H' G' matching M' of G. 

(ii) 

Fig. 7. One of the end vertices v and d of P is of degree 2, the other of degree 3. In (i), v and J are 
adjacent; in (ii), v and d are not adjacent. 
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(b) A Hamiltonian path. 

Fig. 8. Illustration of the proof of the second part of theorem 3. 

used to find all almost-perfect matchings by excluding all possible pairs of  vertices 
in sequence and then applying them. 

3. Connected branching graphs 

All branching graphs mentioned in this section are connected. Clearly, a branch- 
ing graph of a benzenoid system has no interior faces larger than a hexagon. So 
we introduce the following definition: a generalized-benzenoid system is a con- 
nected finite subgraph of  the infinite hexagonal lattice without  interior non-hexa- 
gonal faces. 

In this section, we present a necessary and sufficient condit ion for a general- 
ized-benzenoid system to be the branching graph of a benzenoid system. As a conse- 
quence, we show that for any generalized-benzenoid system G there are at most  
two benzenoid systems whose branching graphs are G. We also give a necessary and 
sufficient condition for a generalized-benzenoid system to be the branching graph 
of  a unique benzenoid system. 

Let G be a generalized-benzenoid system. A cut bond of  G is a bond such that  
the removal from G of  this bond but not  of its end vertices disconnects G. The 
boundary of G is defined to be the subgraph consisting of  all bonds of  G which 
belong to at most  one hexagon of G. Traveling the boundary of  G once, we obtain a 
walk b(G) in which each cut bond of G is traversed twice (a walk is a sequence 
whose terms are bonds such that two consecutive bonds are adjacent). F rom now 
on we regard b(G) as G's boundary and the two appearances of  a cut bond as differ- 
ent bonds in b(G). This convention plays an important  role when we introduce 
some further definitions. Each bond e ofb(G) is contained in a unique hexagon e(h) 
which is on the left hand side when one travels clockwise along the boundary  b(G) 
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of  G. Moreover  e(h} does not  belong to G. Figure 9 shows a general ized-benzenoid 
system G and its bounda ry  b(G). 

A vertex-fjord of  G is a pair  o f  vertices, {v, v~}, of  G such tha t  v and  v' are adja- 
cent in the infinite hexagonal  lattice but  no t  in G (this defini t ion is based on a gener- 
al ization of  the concept  of  " f jo rd"  [22]). See fig. 10(a) for an il lustration. A cove is 
a pa th  in b(G) of length 4 (i.e., conta ining 4 bonds)  which belongs to a hexagon  of  
the infinite hexagonal  lattice but  not  to a hexagon of  G (see also fig. 10(a)). 

A leaf of b(G) is a bond  which is an appearance  in b(G) of a pendan t  bond  of  G. 
N o t e  tha t  a pendan t  bond  of  G corresponds  to two leaves ofb(G).  

Let  LC(G) be the set of  leaves and coves o fb(G)  (see figure 10(b)). Let  x and y 
be two elements of LC(G). Then  x and y are clockwise-consecutive if one can travel 
b(G) clockwise f rom x to y wi thout  going th rough  any other  e lement  of  LC(G). 
Let P(x, y) be the subsequence ofb(G) in clockwise order  a round  the b o u n d a r y  of  G 
with x as its beginning and y as its end. The  hexagon-separation s(x, y) of  two ele- 
ments  x and y of  LC(G) which do not  cor respond to the same pendan t  b o n d  of  G is 
the n u m b e r  of  hexagons in the set {e(h) : e e P(x, y)}. See fig. 10(b) for an illustra- 
tion. By this definit ion,  usually s(x, y) ~ s(y, x). The hexagon-separa t ion  between 
two bonds  of  b(G) which do no t  cor respond to the same pendan t  b o n d  of  G is 
defined similarly. I f  x and y are different in b(G) but  cor respond  to the same pen- 
dan t  b o n d  of  G, then define s(x, y) = s(y, x) = 0. I f  LC(G) is empty,  then  define 
s(G) to be the n u m b e r  of  hexagons in the set {e(h) : e e b(G)}. The hexagon-separa- 
tion s(e) between a bond  e ofb(G)  and LC(G) is defined as the n u m b e r  of  hexagons  
which are on one's  left hand  side and are necessarily passed if one travels b(G) 
clockwise f rom e to the first e lement  of LC(G) to be reached (the hexagon  contain-  
ing this e lement  is also included).  See fig. 10(c) for i l lustration. By convent ion,  if e 
is conta ined  in an e lement  ofLC(G), then s(e) is defined as 1. An  odd-bondis a b o n d  
of  b(G) whose hexagon-separa t ion  s(e) to LC(G) is odd.  An  edge-fjord is a pair  
(e, e ~) of  two odd-bonds  e and e ~ of  b(G) such tha t  the graph G U e(h) U e~(h) has an 
interior  face which does not  belong to G and is no t  e(h) or e~(h) (see fig. 10(c)). An  
even-cut-bondis a cut bond  e of  G such tha t  s(el ) and s(e2) are even for the two appa-  
rances el and  e2 o f e i n  b(G) (see fig. 10(d)). 

IfLC(G) is empty  and s(G) is even, then a cut bond  e of  G is singular if the hexa- 
gon-separa t ions  between its two appearances  in b(G) are odd.  Two  singular  bonds  

4 

2 6 

19 i- ]lO 
1 1 V 1 2  

13 

G 

b(G)=(1,2)(2.3)(3,4)(4.5)(5,6)(6.7)(7,8)(8,10) 
(10,12)(12.13)(13,11)(11,9)(9,8)(8,7)(7,2) 
(2,1). 

Fig. 9. Illustration ofa generalized-benzenoid system G and its boundary walk b(G). 
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LC(G) empty, s(G)=36, z is singular. 
s(x.y)=27 and s(y.x)=l 1. s(e.c')=27 
and s(e' .e)=ll,  e.e',x,y are docks. 
e and e' (x and y) form a bridge. 
z and y form an avoid-pmr. 

(e) (t) 

Fig. 10. I l lustrat ion of  various definitions.  

e and e' form a singular pair if one of the hexagon-separations between one of  the 
appearances o fe  and one of the appearances ofe'  in b(G) is even. A bond e of b(G) is 
a dock if there is a bond e' of  b(G) such that s(e, e') is odd and e(h) t_J eC(h) t3 G con- 
tains an interior face which is not contained in G and is different from e(h) and 
e'(h). Two docks form a bridge if the hexagon-separation between them is even. A 
dock e and a singular bond e' form an avoid-pair if the hexagon-separat ion between 
e and an appearance ofe'  in b(G) is odd. See fig. 10(f) for an illustration. 

T H E O R E M  4 

Let G be a generalized-benzenoid system. Then G is the branching graph of  a ben- 
zenoid system if and only if the following conditions hold: 
(1) G has no vertex-fjords, edge-fjords or even-cut-bonds. 
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(2) For  any two clockwise-consecutive elements x and y ofLC(G), s(x, y) is odd. 
(3) If  LC(G) is empty, then s(G) is even and G has no singular pairs, avoid-pairs 

or bridges. 

By applying theorem 4 to the generalized-benzenoid system G shown in fig. 11, 
we conclude that  G is not  a branching graph. 

Before proving this theorem, we need several lemmas. 
Let x be an element of LC(G); denote by x(h) the hexagon which contains x 

and is one the left hand side when one travels clockwise along b(G). Clearly, x(h) 
does not  belong to G. 

L E M M A  1 

Let G be the branching graph of  a benzenoid system H. Then for each element 
x of LC(G), the hexagon x(h) must belong to H. 

Proof 
I fx  is a leaf ofb(G), by the definition of  branching graph x(h) belongs to H. Sup- 

pose that  x is a cove. If x(h) does not belong to H, then all hexagons adjacent to 
x(h) must  belong to H. This contradicts that x is a cove. [] 

L E M M A  2 

Let G be the branching graph of a benzenoid system H. Let h be a hexagon of  
H such that  h does not  belong to G and does not  contain any element of LC(G). 
Then the two bonds e and e ~ of  H which are in the boundary of H and adjacent to h 
but  do not  belong to h are contained in G (see fig. 12). 

Proof 
If  the lemma is not  true, say e does not belong to G. Then the common  vertex of  

e and h is the end vertex of a pendant  bond of G. Thus h contains an element of  
L C(G). This contradicts the assumption of  the lemma. [] 

C O R O L L A R Y  1 

Let G be the branching graph of H. If  h and h' are two hexagons of  H which do 
not  belong to G and are adjacent, then both h and h' contain an element of LC(G). 
Furthermore,  the common bond ofh and h' is a leaf of  G. 

G 

LC(G)=Ix,y 1. 
s(x,y)=lO. 
G is not a branching graph. 

Fig. 11. Appl ica t ion  of  theorem 4. 
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a 

e 

tt e' 

b C 

Fig. 12. All possible cases for the positions ofe and d. 

LEMMA 3 
Let G be the branching graph of a benzenoid system H. Let h and h ~ be two 

non-adjacent  hexagons of  H which do not  belong to G; and let L be a subpath of  the 
boundary  of  H with one end vertex in h, the other in h' and no other intersections 
with h and h'. If L is contained in b(G), then L belongs to a hexagon of the infinite 
hexagonal lattice which is adjacent to both h and h'. 

Proof 
By the assumptions of  the lemma, the vertices in L are of  degree 3 in H. The num- 

ber of such vertices is at most 4. Since L is contained in the boundary of H, it 
belongs to a hexagon of  the infinite hexagonal lattice which does not  belong to H 
and is adjacent to h and h'. [] 

LEMMA 4 
Let G be the branching graph of a benzenoid system H. Let LC(G) not  be 

empty. Then for a bond e in b(G), e(h) belongs to H if and only ifs(e) is odd. 

Proof 
Let e be a bond of  b(G) and s(e) be odd. If  e is contained in an element of  

LC(G), then by lemma 1 e(h) belongs to H. If  e does not  belong to any element of  
LC(G), then by repeatedly applying lemma 3 we can also show that e(h) belongs to 
H. Conversely, let e(h) belong to H. If e is contained in an element of  LC(G) then 
s(e) by definition is 1. If e is not contained in LC(G), let x be the first reached ele- 
ment  of LC(G) if one travels b(G) clockwise from e. By lemma 1 x(h) belongs to H. 
All the hexagons of H which do not belong to G and are passed when one travels 
b(G) clockwise from e to x are disjoint by lemma 2 (see fig. 13). By repeatedly apply- 
ing lemma 3, s(e) is odd. [] 

e(h) 

x(h) 

Fig. 13. Illustration oflemma 4. 
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LEMMA 5 
Let G be the branching graph of a benzenoid system H and LC(G) not  be 

empty. Then G has no vertex-t~ ords, edge-fjords or even-cut-bonds. 

Proof 
If there is a vertex-fjord (v, v~), let e be the bond which joins v and v'. Note  that  

e does not  belong to G. Then the two hexagons of  the infinite hexagonal lattice 
which share e do not  belong to H. Therefore at least one of  v and v' is not  of  degree 
3. This is a contradiction. If  there is an edge-fjord (e, e'), then by lemma 4 e(h) and 
d(h)  belong to H.  But G U e(h) U e'(h) has an interior face which is not  contained 
in G, e(h) or e'(h). Then all vertices in this face are of degree 3 and thus belong to G. 
This is a contradiction again. If G has an even-cut-bond then by lemma 4, this 
bond is also a cut bond of  H. But as H is a benzenoid system it has no cut bonds. [] 

LEMMA 6 
Let G be the branching graph o f a  benzenoid system H. Let x a n d y  be two clock- 

wise-consecutive elements of  LC(G). Then s(x, y) is odd. I f  LC(G) is empty, then 
s(G) is even. 

Proof 
By lemma 1, x(h) and y(h) belong to H. Similarly to the p roof  of  lemma 4 (by 

repeatedly applying lemmas 2 and 3), we can show that s(x, y) is odd. Also by lem- 
mas 2 and 3, ifLC(G) is empty, s(G) must  be even. [] 

LEMMA 7 
Let G be the branching graph of a benzenoid system H and LC(G) be empty. 

Let e be a dock and d be an appearance of  a singular bond of G in b(G). Then e(h) 
does not  belong to H and d(h) belongs to H. 

Proof 
Since e is a dock, there is a bond e/ofb(G) such that  s(e, d) is odd. By repeatedly 

applying lemmas 2 and 3, ife(h) belongs to H then e'(h) belongs to H. By the defini- 
tion of  dock, H has an internal vertex which does not  belong to G. This is a contra- 
diction. Since d is an appearance of  a singular bond d I of  G, then e I and the other 
appearance d" of  d ~ in b(G) have an odd hexagon-separation. By applying lemmas 
2 and 3 repeatedly, we conclude that either d(h) and e" (h) or none of  them belong 
to H.  Since e" is a cut bond of  G, d (h) and d" (h) belong to H at the same time. [] 

LEMMA 8 
Let G be the branching graph of  a benzenoid system H. If  LC(G) is empty, then 

G has no singular pairs, avoid-pairs or bridges. 

Proof 
By lemma 6, s(G) is even. Let e be a singular bond. Let el and e2 be the two 
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appearances of  e in b(G). Then if el (h) belongs (does not  belong) to H, by repeat- 
edly applying lemmas 2 and 3, we can show that e2(h) belongs (does not  belong) to 
H also. Since G is a branching graph of  H, both el (h) and e2(h) belong to H.  Sup- 
pose that  there is a singular pair e' and e". Let x a n d y  be the appearances ofe '  and el/ 
in b(G) respectively such that s(x, y) is even. Then by repeatedly applying lemmas 
2 and 3, one of  x(h) and y(h) does not  belong to H. This means one of  e' and e" will 
be a cut bond of  H. This is a contradiction. I f  there is an avoid-pair, then there are 
two bonds of  b(G), e and el, such that e is a dock, e' is an appearance of  a singular 
bond  of  G, and s(e, d) is odd. By applying lemmas 2 and 3 repeatedly, we have 
either both  e(h) and d(h) or none of them belong to H. By lemma 7, e(h) does not  
belong to H and e'(h) belongs to H. This is a contradiction. Similarly we can show 
that G has no bridges. [] 

LEMMA 9 

Let G be a generalized-benzenoid system and LC(G) not  be empty. Let h be a 
hexagon which does not  belong to G and b(G) n h be a path. Then either all the 
bonds ofb(G) n h are odd-bonds or none of them are odd-bonds. 

Proof  
Since b(G) n h is a path which belongs to h, by the definition of  odd-bonds,  the 

lemma is true. [] 

Proof of theorem 4 
By lemmas 1-6 and 8, the conditions (1)-(3) are necessary. Now we prove that  

they are also sufficient. 
There are two cases: 
Case 1. LC(G) is not  empty. Let H be the graph obtained by adding all hexagons 

of  the infinite hexagonal lattice which are not in G but contain an element of  
LC(G) or an odd-bond ofb(G). 

Then each vertex of  G in H has degree 3. Now we prove that  all the vertices of  
H of  degree 3 also belong to G. There are three subcases: 

Subcase 1. I f H  has a vertex y of degree 3 which does not  belong to G, then there 
are two hexagons h and h' of  H such that  y is one of  the end vertices of  the c o m m o n  
bond  e of  h and h t. Let x be the other end vertex of  e. Clearly h and h' do not  belong 
to G. Thus each of  h and h' contains an odd-bond of  G (this is because if h and h' 
contain an element of  LC(G) then they contain an odd-bond; if they do not  contain 
an element of  LC(G), then by the definition of  H,  they also contain an odd-bond).  
Let el and e2 be two such odd-bonds of  h and h' respectively. Let P be the path  in 
h U h' with el and e2 as its end bonds which does not  contain y (see fig. 14). By the 
choice of  P, x belongs to it. Let P have a vertex z not  in G (clearly z is not  an end 
vertex of  el or e2). One of  z and y is an internal vertex of  G U h U h', otherwise the 
deletion of  z and y from G U h U h t results in a disconnected graph. Thus el and e2 
belong to different connected components  of  G. This contradicts that  G is con- 
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e 2 

Fig. 14. Illustration ofsubcase 1 in the proof  of theorem 4. 

nected. Wi thout  loss of  generality, let z be an internal vertex. Then z belongs to an 
interior face of  G U h U h ~ which is not  in G, h or h ~. Therefore (el, e2) is an edge- 
fjord, a contradict ion again. Hence all the vertices of  P belong to G. We can regard  
P as a subpath o f  b(G). Since P n h and P N h ~ are contained in h N b(G) and 
h' n b(G) respectively, and el and e2 are odd-bonds,  by lemma 9 all bonds of  P are 
odd-bonds.  By this we can assume that  el and e2 are adjacent to x. I f  each of  el and 
e2 belongs to an element o f  LC(G), then the hexagon-separat ion of  the two ele- 
ments  of LC(G) is 2. This contradicts  the condition (2) of  the theorem. I f  neither el 
nor  e2 belong to an element of  LC(G), then by considering the relative positions 
of  el and e2, we have that  I s ( e l )  - s ( e a ) [  = 1. Thus only one of  el and e2 is an odd- 
bond. This is a contradict ion again. The left case is that  one of  el and e2 belongs to 
an element of  LC(G) and the other does not. If  e2 belongs to an element B of  
LC(G), then s(el) = s(el, B) = 2, i.e., el is not  an odd-bond.  A contradict ion.  I f  el 
belongs to an element B ~ of  LC(G), then there is an element B" of  LC(G) such that  
s(e2, B") = s(e2). Since s(B~,B ") = 1 + s(e2),B' and B" have an even hexagon- 
separation,  again a contradiction.  

Subcase 2. I f  there is a bond e of  H such that  its two end vertices have degree 3 
but  e does not  belong to G, then G has a vertex-fjord. A contradict ion.  

Subcase 3. I f H  has a cut bond e, then e belongs to G. By the definition o f  H,  e is 
an even-cut-bond. A contradiction. 

So by subcases 1-3, all the vertices of  degree 3 together  with the bonds between 
them belong to G. I f H  is not  a benzenoid system, then it has an interior face which is 
larger than a hexagon. Thus H has some internal vertices of  degree 2. We claim 
that  there is a hexagon of  H which contains an external vertex of  degree 2 as well as 
an internal vertex of  degree 2. I f  this is not  true, then after deleting all external  ver- 
tices of  degree 2 f rom H a graph 6;' is obtained in which each internal vertex o f  
degree 2 of  H is also an internal vertex. Then after removing all the internal vertices 
of  degree 2 f rom G ~, G is obtained. Thus G has an circuit which is larger than a hexa- 
gon. This is a contradict ion.  Let h be such a hexagon. Let vl and v2 be two vertices 
o fh  such that  Vl is an external vertex of  degree 2 and v2 is an internal vertex of  degree 
2 in H.Vl and v2 are not  adjacent otherwise both of  them are either internal vertices 
or external  vertices at the same time. I f  both  of  them are adjacent  to a vertex v, 
then v is of  degree 3; otherwise vl and v2 are either internal vertices or external  ver- 
tices at the same time. Thus v is the end vertex of  a leaf  of  b(G). By the definition 
of  H ,  vl and v2 are of  degree 3 in H.  This is a contradiction.  For  the same reason, 
none of  the vertices of  h are leaves of  b(G). The only possible positions o f  vx and  v2 
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are indicated in fig. 15. Let e and e' be the two bonds of  h as shown in fig. 15. Since 
h does not  belong to G, one ofe  and e ~, say e, is an odd-bond or an element ofLC(G). 
The end vertices of  el are not  leaves of b(G), and they are also not  of  degree 2 in H 
otherwise v: and V2 are external or internal vertices of  H. Thus e' belongs to G. Ife' is 
an odd-bond,  then clearly (e, e') is an edge-t]ord. I fe '  is not  odd, then the bonds of  
b(G) which are adjacent to e' are odd-bonds. By the definition of  H,  one of  vl and v2 
is not  of  degree 2 in H. There is a contradiction in both cases. 

By the above discussion, we show that H is a benzenoid system and G is its 
branching graph. 

Case 2. LC(G) is empty. Let S = {e(h) : eEb(G)}. The cardinality of  S is s(G). 
We rank the hexagons of S in an order hi, h2 , . . . ,  h~(~) such that  when travelling 
b(G) clockwise one passes hi before passing hi+l. Let G(H) and G(H)' be the two 
graphs obtained by adding hexagons h i with odd subindices and even subindices to 
G respectively. If  G has a singular bond e, without loss of  generality, let e be in hi. 
Then G(H) has no cut bonds for G has no singular pairs. Similarly to case 1, we can 
show that  each vertex of G is of  degree 3 in G(H). Moreover,  each vertex of  degree 
3 in G(H) belongs to G. The remaining case is to show that  G(H) has no interior 
faces larger than a hexagon. This is true because G has no avoid-pairs and bridges. 
Thus G(H) is a benzenoid system with G as its branching graph. If  G has no singu- 
lar bonds, by noting that G has no bridges, we can also show that one of  G(H) and 
G(H) I is a benzenoid system with G as its branching graph. 

The proof  is completed. [] 

COROLLARY 2 
Let G be a branching graph. Then there are two benzenoid systems with G as 

their branching graph if and only if L C(G) is empty and G has no singular bonds or 
docks. 

Proof 
By lemmas 1 and 4, ifLC(G) is not empty, then there is a unique benzenoid sys- 

tem with G as its branching graph. IfLC(G) is empty, then by lemmas 2 and 3, the 
only candidates with G as their branching graph are G(H) and G(H)' as in the 
p roof  of  case 2 of theorem 4. If  G has no singular bonds or docks, then both of  them 
are benzenoid systems. [] 

v2~  The internalvertex of 
degree 2. 

Fig. 15. Illustration ofsubcase 3 in the proof of theorem 4. 
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The following corollary is theorem 3 in [15]: 

COROLLARY 3 (GUTMAN AND KIRBY) 
Let G be a generalized-benzenoid system. Then G is the branching graph of two 

different benzenoid systems at most. 

4. Disconnec ted  branch ing  graphs 

A hex-diagram is a subgraph of the infinite hexagonal lattice without nonhexa- 
gonal interior faces and together with its exact position in the infinite hexagonal 
lattice. A connected component of a hex-diagram is a maximal subgraph of it in 
which any two vertices are joined by a path. A hex-diagram is a geometric diagram. 
When a hex-diagram is given, then all the positions of its vertices and bonds are 
known. For example, the two hex-diagrams shown in fig. 16 are different despite 
the fact that they have the same connected components. 

In this section, we show that ifa hex-diagram has more than one connected com- 
ponent, then it is the branching graph of at most one benzenoid system. 

Let G be the branching graph of a benzenoid system H and have more than one 
connected component. Let C be a connected component of G. Let H(C) be the sub- 
graph of H formed by all hexagons of H which contain at least one vertex of C. 

LEMMA 10 
Let G be the branching graph of a benzenoid system H and C be a connected 

component of G. Then C is the branching graph of H(C).  

Proof 
Every vertex of C in H(C) is of degree 3. I fH(C)  has a vertex v of degree 3 which 

is not in C, then there are two hexagons hi and h2 of H(C)  which contain v. Let e 
be the common bond of hi and h2. Then v is one of the end vertices ofe. Let v' be the 
other end vertex of e. Clearly, v' and all the neighbors of v and v' do not belong to 
C, otherwise v belongs to C. By the choice of hi and h2, hi n C and h2 n C are non- 
empty. If either hi n C or h2 n C, say hi n C, contains only a single vertex, then 
the neighbors of this vertex in hi are of degree 2 in H. Since H is a benzenoid system, 
this is impossible. Thus each of hi n C and h2 n C contains a single bond. Let 

G G' 

Fig. 16. Illustration of the definition ofhex- diagram. 
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hi n C be el and h2 n C be e2. Note that the end vertices of el and e2 are not neigh- 
bors ofv  and v s. The only possible positions of el, e2, v and vS are shown in fig. 17. If  
both of v and z /are  external vertices of H, then the deletion of v and v' from H 
results in a disconnected graph. Thus C is not connected. This is a contradiction. 
Without loss of generality, let v be an internal vertex of H. Then all neighbors of v 
are of degree 3. Moreover, v and its neighbors belong to the same connected compo- 
nent of G as el and e2. Thus v belongs to C, a contradiction again. Every vertex of 
degree 3 of H(C) belongs to C. Clearly H(C) has no cut bonds. We can also show 
that H(C) has no interior faces larger than a hexagon. Thus H(C) is a benzenoid 
system and C is its branching graph. [] 

LEMMA 11 
Let G be the branching graph of a benzenoid system H. Then each hexagon of 

H contains at least one bond of G. 

Proof 
By the definition of G. 

LEMMA 12 
Let G be the branching graph of a benzenoid system H which is not connected, 

and C be a connected component of G. Then there is a connected component C ~ of 
G different from C and a hexagon h of H such that h n C and h n C' are two parallel 
bonds. 

Proof 
By lemma 10, C is the branching graph of H(C). Since G is not connected, 

H(C) is not equal to H. Thus there are a hexagon h of H(C) and a hexagon h' of H 
such that h / is not in H(C) and is adjacent to h. The common bond e of h and h / 
belongs to a connected component C ~ of G. Because h ~ is not in H(C),  C ~ is different 
from C. By lemma 11, h contains a bond of C. Every bond of h n C is parallel to e, 
otherwise e is in C. Thus h N C contains a single bond. Similarly, we can show 
that h n C' contains a single bond which is e. The bonds of h n C and h N C' are 
parallel. [] 

The boundary b(G) of G is defined to be the union of the boundaries of its con- 
nected components. For a bond e in b(G), we define e(h) to be the unique hexagon 
which contains e and is on the left hand side when one travels along the boundary of 

Fig. 17. Illustration of the proof of theorem 5. 
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G clockwise (here travelling along the boundary of G means to travel the bound- 
aries of the connected components one by one). A connected-band e of b(G) is a 
bond of b(G) which is parallel to another bond e ~ of b(G) such that they belong to 
different connected components of G and are contained in the same hexagon of the 
infinite hexagonal lattice. Such a pair (e, e') is called a gulf of G. 

For each connected component C of G, let A (C) be the set of coves and leaves 
and connected-bonds ofb(G) contained in b(C). All the concepts (such as hexagon- 
separation, even-cut-bonds and so on) defined in the previous section can be 
extended to each component of G in a straightforward way. If  G has more than one 
connected component, then by lemma 12 for each connected component C of G, 
A(C) is not empty. 

LEMMA 13 

Let G be a hex-diagram and (e, e') be a gulf. If G is the branching graph of a ben- 
zenoid system H, then the hexagon containing e and e ~ belongs to H. 

Proof 
If the lemma is not true, then one can check very easily that e and e' belong to 

the same connected component of G. [] 

COROLLARY 4 

Let G be a hex-diagram and e be a connected-bond of b(G). Then e(h) belongs 
to H. 

THEOREM 5 

Let G be a hex-diagram with more than one connected component. Let 
C1, (?2,. . . ,  Ck be its connected components. If G is the branching graph ofa  benze- 
noid system H, then H is unique. 

Proof 
Let G be the branching graph of a benzenoid system H. By Lemma 10, Ci is the 

branching graph of H(Ci). By lemma 12, Ci contains at least one connected-bond. 
By corollary 4 and following the proof of corollary 2, H(Ci) is unique. Thus 
t.-JiH( Ci) : H is unique. [] 
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